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Abstract—An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat

an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the

intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the

dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed.We prove

two propositions for finding the transformationmatriceswhich are used to map the original tensor samples to the tensor-based graph

embedding space. In order to encodemore discriminant information in the embedding space, we propose a transfer-learning- based

semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times

is transferred.We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new

tracking algorithm captures an object’s appearance characteristics during tracking and uses a particle filter to estimate the optimal object

state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

Index Terms—Discriminant tracking, tensor samples, semi-supervised learning, graph embedding space

Ç

1 INTRODUCTION

VISUAL tracking [48], [49], [50], [51] is an essential com-
ponent in many practical computer vision applications,

such as visual surveillance, vehicle navigation, vision-based
control, human computer interfaces, intelligent transporta-
tion, and augmented reality. Despite much effort resulting
in many novel tracking algorithms, tracking generic objects
remains challenging [31] because of the intrinsic and extrin-
sic appearance changes. The intrinsic appearance changes
are caused by objects themselves, for example if they
deform or rotate. The extrinsic appearance changes are asso-
ciated with the environment of the objects, and the causes
of such changes include partial occlusions, illumination
changes, and cluttered or moving backgrounds. The effec-
tive modeling of object appearance variations plays a critical
role in visual object tracking [1], [2], [3], [6], [8], [9], [13], [21].
Many tracking algorithms construct an adaptive appearance
model for an object based on image patches collected in pre-
vious frames, and use this model to find the most likely
image patch on the object in the current frame. Appearance
models can be categorized into generative models and dis-
criminative models [45]. A generative model describes the

distribution of the image patches of an object in previous
frames. Tracking is reduced to a search for an optimal state
that yields an object appearance most similar to the model.
A discriminative model describes not only the image
patches of the object but also some background image
patches. The tracking is based on a binary classifier to dis-
tinguish the object from the background. Usually, the image
patches corresponding to the tracking results are used as
the labeled positive samples, and the image regions selected
from the background are used as the labeled negative sam-
ples [6], [10]. Then, a classifier is trained in a supervised
way using these labeled positive and negative samples. A
number of new samples can be selected in each new frame,
and these unlabeled samples are used in a semi-supervised
way [6], [10] to improve the classifier.

In this paper, we propose a new discriminative tracking
algorithm inwhich each image patch is represented by a two-
order tensor. The relations among object image patches and
background image patches in the previous frames are repre-
sented by graphs. The two-order tensor-based graph embed-
ding is used to learn the discriminative subspace (the
discriminative embedding space) for distinguishing the object
image patches from the background image patches. A num-
ber of unlabeled image patches collected from the current
frame are used to refine the discriminative embedding space.

1.1 Related Work

In order to give the context of our work, we briefly review
image-as-vector representation, image-as-feature represen-
tation, and image-as-matrix representation for image
patches, together with semi-supervised strategies for dis-
criminant tracking.

1) Image-as-vector representation: Many tracking algorithms
[21], [35] adopt a holistic image-as-vector representation in
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which image patches are flattened to vectors. These algo-
rithms include ‘1 minimization-based tracking algorithms [3],
[17], [18], [33], [34], which exploit the sparse representation of
image patches on the object. Kwon and Li [8], [9] constructed
multiple basic appearance models using sparse principal
component analysis (PCA) of a set of feature templates, such
as global image-as-vector descriptors of hue, saturation, inten-
sity, and edge information. These image-as-vector representa-
tion methods ignore the fact that an image is intrinsically a
matrix or a two-order tensor, and thus mask the underlying
2D structure of an image. This may lead to the loss of the dis-
criminant information required for tracking.

2) Image-as-feature representation: There are algorithms
that directly extract features from image patches and use
the features to carry out tracking. For instance, Grabner
et al. [5], [6] used Haar-like features, histograms of oriented
gradients, and local binary patterns to obtain weak hypothe-
ses for boosting-based tracking. In [2], [10] only Haar-like
features were used, but great improvements were achieved
by novel appearance models. Li et al. [12], [15] only used
histograms of oriented gradients but applied novel appear-
ance models to achieve good results. Adam et al. [1]
robustly combined multiple patch votes with each image
patch represented only by gray-scale histogram features.
Although image-as-feature representations, such as Haar-
like featured-based ones, are appropriate for specifically
designed discriminant learning methods, such as boosting,
a lot of useful information is omitted from the features.

3) Image-as-matrix presentation: image-as-matrix represen-
tation, such as tensor representation, retains much more
useful information because the original image structure is
preserved. It usually models the relations between pixel
rows and the relations between pixel columns while the
image-as-vector representation usually only models the
relations between pixels. Tensor-based subspace learning
[7], [27], [29] has been applied to visual tracking [11], [13],
[24], [25], [26]. Some tensor-based tracking algorithms [13],
[24], [25] conducted PCA on the mode-k unfolding matrix.
There are algorithms [11], [26] in which eigenvalue decom-
position on the covariance [19] in the mode-k unfolding
matrix was applied to carry out tracking tasks. Although
these tensor-based tracking methods take into account the
correlations between different dimensions of the object
appearance which changes over time, they currently have
the following limitations:

� The dimension reduction-based subspace learning
methods used in [13], [24], [25] have the problem of
subspace learning degradations [27] which may lead
to loss of tracking. Although Yan et al. [27] proposed
to rearrange pixels in the tensor to deal with subspace
learning degradation, the time consuming pixel rear-
rangement is unsuitable for tracking applications.

� The current tensor-based tracking algorithms cannot
fully detect the intrinsic local geometrical and dis-
criminative structure of the collected image patches
in tensor form.

� The current tensor-based tracking algorithms ignore
the influence of the background and consequently
suffer from distractions caused by background
regions with appearances similar to the object.

Two-dimensional linear discriminant analysis (2DLDA)
[30] was proposed to detect the discriminative structure of
two-order tensor samples. However, the intrinsic local geo-
metrical structure of the samples cannot be detected,
because 2DLDA does not take into account the variations in
the samples within the same class.

Discriminant tracking utilizes the background informa-
tion to improve object tracking. Avidan [46], [47] made
important contributions to the research on discriminative
tracking. In [46], Avidan trained online an ensemble of
weak classifiers to distinguish between the object and the
background. The resulting strong classifier was then used
to label pixels in the next frame as either belonging to the
object or the background. In [47], Avidan integrated the
support vector machine classifier into an optic-flow-based
tracker. In discriminant tracking, semi-supervised learning
techniques can be applied to improve the classification of
samples as the object or the background. Most semi-super-
vised improvement-based tracking algorithms [6], [10], [12]
use all the unlabeled samples for training without selection.
For example, Grabner et al. [6] weighted the unlabeled
samples and then used all the unlabeled samples to train
their feature selection-based boosting classifier. Li et al. [10]
developed an excellent semi-supervised CovBoost method
for discriminant tracking. As not all the unlabeled samples
are useful for improving the classifier, it is required to select
useful unlabeled samples and assign correct class labels to
them. Bennett et al. [4] and Rosenberg et al. [20] proposed
the classification margin improvement techniques [4], [20]
to select the unlabeled samples with the highest classifica-
tion confidences. These unlabeled samples were assigned
with the class labels that are predicted by the current classi-
fier. These techniques may increase the classification mar-
gin, but they do not provide any novel information to adjust
the discriminative subspace. The margin improvement tech-
niques are inappropriate for visual tracking.

1.2 Our Work

Graph embedding for dimension reduction [22], [28] pro-
vides a new framework to handle the limitations in the
image-as-matrix representations. In this paper, we propose
a semi-supervised tensor-based graph embedding learning
algorithm and apply it to visual discriminant tracking [38].
Fig. 1 shows the high level framework for our tracker. Our
algorithm treats an image patch as a two-order tensor. The
labeled object and background tensor samples collected in
previous frames and the unlabeled tensor samples collected
in the current frame are used to train a tensor-based graph
embedding space by our proposed semi-supervised graph
embedding learning algorithm. This graph embedding algo-
rithm is incorporated into the particle filtering-based track-
ing framework to track the object in the current frame. The
tracking result in the current frame is used to update the set
of the labeled samples.

In our two-order tensor-based graph embedding learning
algorithm, an intrinsic graph is designed to represent correla-
tions between the object tensor samples and correlations
between the background tensor samples. A penalty graph is
designed to keep apart the object tensor samples and the back-
ground tensor samples. The framework of graph embedding
for dimension reduction is used to find the transformation
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matrices for mapping the original tensor samples to the ten-
sor-based graph embedding space. Due to the degradations
in the tensor embedding space learning [27], the embedding
may not contain enough discriminative information for reli-
able tracking. We propose to encode more discriminant infor-
mation by improving the tensor-based discriminative
embedding space using the available unlabeled tensor sam-
ples in a semi-supervised way. In discriminant tracking, the
existing single transformation matrix-based method [36]
improves the discriminant space only by adding to the objec-
tive function a constraint term for handling the unlabeled
samples. This method is difficult to use intuitively and
directly in the two-order tensor-based graph embedding
learning for which two transformation matrices are required,
because it is difficult to define an appropriate regularizer for
handling the two associated transformation matrices. In this
paper, we carry out a transfer-learning-based semi-super-
vised improvement in an iterative way. At each iteration, the
unlabeled tensor samples which are most probably misclassi-
fied at the previous iteration are selected according to their
similarities to the labeled samples which are collected at ear-
lier tracking stages. The corrected class labels are assigned to
the selected unlabeled samples and used to learn a new dis-
criminative embedding space into which the information
about the earlier changes in object appearance is transferred.
The learned embedding spaces from different iterations are
combined linearly to form a final adjusted embedding space.

The main contributions of our work are summarized as
follows:

� We develop a two-order tensor-based graph embed-
ding learning algorithm. The intrinsic local geometri-
cal and discriminative structures of the tensor
samples are effectively represented.

� We propose a transfer-learning-based semi-super-
vised learning method to adjust the two-order tensor
graph embedding space. The semi-supervised tech-
nique selects the unlabeled tensor samples by com-
paring them with the samples with known classes
collected at earlier times. Historical complementary
information is transferred to adjust the discrimina-
tive embedding space.

� We incorporate the proposed semi-supervised two-
order tensor-based graph embedding learning proce-
dure into a Bayesian inference framework. Then, a
new visual discriminative tracker is formed to effec-
tively capture the appearance changes and reliably
separate a moving object from the background.

The remainder of the paper is organized as follows:
Section 2 proposes our two-order tensor-based graph
embedding learning algorithm. Section 3 presents the

transfer-learning-based semi-supervised improvement
strategy. Section 4 describes our discriminant tracking algo-
rithm. Section 5 demonstrates the experimental results. Sec-
tion 6 summarizes the paper.

2 TENSOR-BASED GRAPH EMBEDDING

In the following, we summarize the tensor operations, intro-
duce the basic concept of tensor-based graph embedding,
and propose our two-order tensor-based graph embedding
learning algorithm.

2.1 Tensor Operations

A tensor [23] can be regarded as a multi-order “array” lying
in multiple vector spaces. An n-order tensor is denoted as

A 2 RI1�I2�...Ik�...In , where Ik ðk ¼ 1; 2; . . . ; nÞ is a positive
integer. An element in the tensor is represented as
ai1;...;ik;...;in , where 1 � ik � Ik. The inner product of two n-

order tensors A and B is defined as:

A;Bh i ¼
XI1
i1¼1

XI2
i2¼1

:::
XIn
in¼1

ai1;i2;...;inbi1;i2;...;in : (1)

The norm of A is kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA;Ai

p
, where for a two-order

tensor it is called the Frobenius norm and written as kAkF .
The distance between A and B is kA � Bk.

Each order of a tensor is associatedwith a “mode”. Along a

mode k, a tensor is unfolded into a matrix AðkÞ 2 R
Ik�ð
Q

i 6¼k IiÞ

which consists of Ik-dimensional mode-k column vectors
obtained by varying the kth mode index ik and keeping the
indices of the other modes fixed. The inverse of mode-k
unfolding is mode-k folding, which restores the original ten-
sorA fromAðkÞ. Themode-k productA�kM of a tensorA and

a matrix M 2 RJk�Ik is a tensor C 2 RI1�����Ik�1�Jk�Ikþ1�����In

whose entries are:

c
1;...;ik�1;j;ikþ1;...;in ¼

XIk
i¼1

ai1;...;ik�1;i;ikþ1;...;inMji; j ¼ 1; . . . ; Jk: (2)

The tensor C can also be obtained by matrix multiplication
CðkÞ ¼MAðkÞ and then mode-k folding of CðkÞ. Given a ten-

sor A and three matrices G 2 RJn�In , C 2 RKn�Jn , and

Z 2 RJm�Im (n 6¼ m), the following tensor mode-n product
formulae hold ðA�nGÞ�mZ ¼ ðA�mZÞ�nG ¼ A�nG�mZ
and ðA�nGÞ�nC ¼ A�nðCGÞ.

2.2 Tensor-Based Graph Embedding

Let fX i 2 RI1�I2�...�Ingi¼1;2;...;N be the set of N training sam-
ples in the n-order tensor form. An intrinsic graph G and a
penalty graph Gp, both of which have the vertex set
fX igi¼1;2;...;N , are constructed to model the local geometrical

Fig. 1. The high level framework for our tracker.
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and discriminative structure of tensor samples. Let W and
Wp be the edge weight matrices of G and Gp, respectively.
The entryWij in Wmeasures the similarity between vertices

X i and X j, and the entry Wp
ij in Wp measures their differ-

ence. The intrinsic graph describes desired statistical or geo-
metric properties of the samples. The penalty graph
characterizes statistical or geometric properties to be sup-
pressed. The graphs G and Gp are designed according to the
application [40].

The task of the tensor-based graph embedding [28] is to
find an optimal low dimensional tensor representation for
each vertex in a graph G such that the low dimensional ten-
sor representations optimally characterize the similarities
between the vertex pairs. The characteristics of the original
intrinsic graph are preserved and at the same time the char-
acteristics identified by the penalty graph are suppressed.

Let fMk 2 Rlk�Ikgk¼1;2;...;n;lk < Ik
be a set of n transformation

matrices which map the samples fX igi¼1;2;...;N to N points

fYi 2 Rl1�l2�����lngi¼1;2;...;N in a lower dimensional tensor

subspace. Namely Yi ¼ X i�1M
1�2M

2 . . .�nM
n. Then, an

optimal transformation which preserves the graph structure
is obtained by solving the following optimization:

Mk
� �n

k¼1¼ argmin
XN
i¼1

XN
j¼1

Yi � Yj

�� ��2Wij

 !

subject to
XN
i¼1

XN
j¼1

Yi � Yj

�� ��2Wp
ij ¼ d;

(3)

where d is a constant.

2.3 Two Order Tensor-Based Graph Embedding
Learning

In many applications, such as discriminant tracking, the
samples can be expressed in the two-order tensor form:

fX i 2 RI1�I2gi¼1;2;...;N , and the sample set consists of

labeled training samples and unlabeled samples. The
unlabeled samples are usually given pseudo labels which
are predicted by a classifier. Let “þ1” indicate the
labeled positive samples, and “�1” indicate the labeled
negative samples. Let “þ2” indicate the pseudo positive
samples, and “�2” indicate the pseudo negative samples.
Then, the class labels of the training samples are repre-
sented by fLi; i ¼ 1; 2; . . . ; NgðLi 2 f�2;�1;þ1;þ2gÞ.
Let nc be the number of the samples with class

c 2 f�2;�1;þ1;þ2g. Then,
Pþ2

c¼�2 nc ¼ N .
The intrinsic graph in the graph embedding frame-

work characterizes the intra-class compactness. The pen-
alty graph characterizes the interclass separability. The
distributions of samples, such as the background sam-
ples in tracking applications, are disordered, irregular,
and multimodal. The global linking [36] between sam-
ples for defining the graph structure may not be effective
for classes which are widely scattered. As a result, its
ability to maximize the between-class scatters is limited.
Local linking between samples for defining the graph
structure is more appropriate to preserve the scattered
sample distributions. In this paper, we design the two
graphs, G and Gp, to model the local geometrical and dis-
criminative structure of the tensor samples.

2.3.1 Definition of Graph Structure

We define the affinity Aij between samples i and j using the
local scaling method in [32]. Without loss of generality, we

assume that the data points in fX igNi¼1 are ordered accord-
ing to their labels fLig (Li 2 f�2;�1;þ1;þ2g). When
Li > 0 and Lj > 0, Aij is defined as:

Aij ¼ exp �
X i � X j

�� ��2
sisj

 !
; (4)

where si ¼ kX i �X i
ðkÞk, and X i

ðkÞ is the kth nearest neighbor

ofX i in fX jgNj¼n�2þn�1þ1. The affinities for a positive or pseudo
positive sample are defined for all the positive and pseudo
positive samples.WhenLi < 0 andLj < 0,Aij is defined as:

Aij ¼ exp � jjX i�X jjj2
sisj

� �
; if i 2 Nþk ðjÞ or j 2 Nþk ðiÞ

0; otherwise

8<
: ; (5)

where Nþk ðiÞ is the index set of the k-nearest neighbors of X i

in fX jgn�2þn�1j¼1 , si ¼ kX i � X i
ðkÞk; and X i

ðkÞ is the kth nearest

neighbor of X i in fX jgn�2þn�1j¼1 . The affinities for a negative

or pseudo negative sample are only defined for its k-nearest
negative or pseudo negative neighbors. This definition
reflects the local spatial relation between negative and
pseudo negative samples.

We construct the intrinsic graph G by defining the
weights Wij in W of G. When i ¼ j, kYi � Yjk ¼ 0, and then
the value of Wii does not influence the optimization in (3).
So, we only consider the definition of Wij when i 6¼ j. The
weights are defined as follows:

Wij ¼

Aij

nc
; if Li ¼ Lj ¼ c
Aijffiffiffiffiffiffiffiffiffiffiffiffi

nþ1nþ2
p ; if Li > 0; Lj > 0; and Li 6¼ Lj

Aijffiffiffiffiffiffiffiffiffiffiffiffi
n�1n�2
p ; if Li < 0; Lj < 0; and Li 6¼ Lj

0; otherwise:

8>>>><
>>>>:

(6)

WhenLiLj > 0, the nearby data pairs (large values ofAij) are
assigned large positive weights, and the data pairs far apart
(small values of Aij) are assigned small positive weights.
WhenLiLj < 0, there is no linking between the samples.

We construct the penalty graph Gp by defining the ele-
mentsWij

pði 6¼ jÞ ofWp of Gp as follows:

Wp
ij ¼

Aij
1
N � 1

nc

� 	
; if Li ¼ Lj ¼ c;

Aij
1
N � 1ffiffiffiffiffiffiffiffiffiffiffiffi

nþ1nþ2
p

� 	
; if Li > 0; Lj > 0; and Li 6¼ Lj

Aij
1
N � 1ffiffiffiffiffiffiffiffiffiffiffiffi

n�1n�2
p

� 	
; if Li < 0; Lj < 0; and Li 6¼ Lj

1
N ; otherwise:

8>>>>><
>>>>>:

(7)

When LiLj > 0, the nearby data pairs are assigned more
negative weights. When LiLj < 0, the data pairs are
assigned a positive weight 1=N . As the penalty graph is
used to separate the object from the background, we assign
a positive weight to each pair of samples whose labels have
different signs (“þ” or “�”) in order to increase separability
between the object samples and the background samples.
We assign a negative weight to each pair of samples whose
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labels have the same sign, in order to draw closer the sam-
ples with the same sign.

Due to the definition of Aij, local spatial relations
between tensor samples are included in the graph structure.
The weights of the graphs are averaged by the number of
the samples with the same label. The effect of the unlabeled
samples is reflected by the terms 1=nc, 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ1nþ2
p

, and

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1n�2
p

in (6) and (7). In this way, non-uniformity of the

number of the labeled positive (or negative) samples and
the number of the pseudo positive (or negative) samples is
dealt with.

2.3.2 Solution

He et al. [7] proposed a tensor subspace analysis method in
which only an adjacency graph, rather than an intrinsic
graph and a penalty graph, is used. We extend the deriva-
tion in [7] to the framework of graph embedding, to reduce
(3) to a more tractable form.

Instantiation of (3) for two-order tensors yields:

minimize
U;V

XN
i¼1

XN
j¼1
jjUTX iV�UTX jVjj2FWij

subject to
XN
i¼1

XN
j¼1
jjUTX iV�UTX jVjj2FW

p
ij ¼ d ;

(8)

where UT ¼M1 and VT ¼M2. We derive (8) in the tensor

form. In the two-order tensor case, Yi ¼ X i�1M
1�2M

2.
The mode-1 unfolding of the tensor A is Að1Þ ¼ A and the

mode-2 unfolding is Að2Þ ¼ AT . Denote X i�1M
1 as tensor

T . Then, T can be computed by matrix multiplication

Tð1Þ ¼M1X ið1Þ ¼ UTX i and mode-1 folding of Tð1Þ. Then,

T ¼ UTX i. Tensor Yi can be computed by matrix multipli-

cation Yið2Þ ¼M2Tð2Þ ¼ VTT T and mode-2 folding of Yið2Þ.

Then, Yi can be derived as:

Yi ¼ ðYið2ÞÞT ¼ ðVTT T ÞT ¼ T V ¼ UTX iV: (9)

Substitution of (9) into (3) yields (8).

Proposition 1. Let D and Dp be diagonal matrices whose diago-

nal elements areDii ¼
PN

j¼1 Wij andD
p
ii ¼

PN
j¼1 W

p
ij, respec-

tively. The optimization problem in (8) can be reformulated as
the following optimization problem:

minimize
U;V

traceðVT ðDU �WUÞVÞ

subject to traceðVTðDp
U �Wp

UÞVÞ ¼
d

2
;

(10)

where

DU ¼
XN
i¼1

DiiXT
i UUTX i;WU ¼

XN
i¼1

XN
j¼1

WijXT
i UUTX j; (11)

Dp
U ¼

XN
i¼1

Dp
iiXT

i UUTX i;W
p
U ¼

XN
i¼1

XN
j¼1

Wp
ijXT

i UUTX j: (12)

Proof. Referring to [7], the following equations are obtained:

1

2

XN
i¼1

XN
j¼1
jjUTX iV�UTX jVjj2FWij ¼ trace VT DU �WUð ÞV


 �
;

(13)
1

2

XN
i¼1

XN
j¼1
jjUTX iV�UTX jVjj2FW

p
ij ¼ trace VT Dp

U �Wp
U


 �
V


 �
:

(14)

Substitution of (13) and (14) into (8) reformulates the
optimization problem in (8) as the optimization problem
in (10). In (10), U and V can be swapped. Similar to (11)
and (12), we defineDV ,WV ,D

p
V , andWp

V . tu

Proposition 2.When V is fixed, the optimal U is composed of the
generalized eigenvectors corresponding to the l1 largest eigen-
values of the equation ðDp

V �Wp
V Þu ¼ �ðDV �WV Þu, where

u is a vector whose dimension equals the column vector
dimension of U. Similarly, when U is fixed, the optimal V is
composed of the generalized eigenvectors corresponding to
the l2 largest eigenvalues of the equation ðDp

U �Wp
UÞv ¼

�ðDU �WUÞv, where v is a vector whose dimension equals
the column vector dimension of V.

Proof. The Lagrangian format of the constrained optimiza-
tion in (10) is:

�ðVÞ ¼ traceðVT ðDU �WUÞVÞ � g traceðVT ðDp
U �Wp

UÞVÞ �
d

2

� �
:

(15)

Equation (15) corresponds to a minimization problem
and the smallest eigenvalues are required for solving.
We transform (15) to

gðVÞ ¼ traceðVT ðDp
U �Wp

UÞVÞ �
d

2

� �
� � traceðVT ðDU �WUÞVÞ:

(16)

Equation (16) corresponds to a maximization problem
and the largest eigenvalues are required for solving. The
partial derivative of (16) yields

@gðVÞ
@V

¼
@ traceðVT ðDp

U �Wp
UÞVÞ � �traceðVT ðDU �WUÞVÞ


 �
@V

¼ 0:

(17)

It follows that

VT ððDp
U �Wp

UÞ þ ðD
p
U �Wp

UÞ
T Þ � �VT ððDU �WUÞ

þ ðDU �WUÞT Þ ¼ 0:

(18)

It is apparent that ðDp
U �Wp

UÞ ¼ ðD
p
U �Wp

UÞ
T and ðDU �

WUÞ ¼ ðDU �WUÞT . Then
VT ðDp

U �Wp
UÞ

T ¼ �VT ðDU �WUÞT ; (19)

ðDp
U �Wp

UÞV ¼ �ðDU �WUÞV: (20)

Then, when U is fixed the optimal V consists of the
l2 generalized eigenvectors that correspond to the l2 larg-
est eigenvalues of the equation ðDp

U �Wp
UÞV ¼ �ðDU�

WUÞV. tu
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The Laplacian matrix Dp
U �Wp

U is I1 � I2-dimensional.
The corresponding Laplacian matrix for the image-as-vector
representation-based tracking algorithms are ðI1 � I2Þ�
ðI1 � I2Þ dimensional while the dimension of a vector
obtained by flattening an image is I1 � I2. Therefore, the
number of the samples sufficient to learn an effective tensor
subspace is much less than the number of the samples suffi-
cient to learn an effective vector subspace.

2.3.3 Algorithm

We use the training dataset fX i; i ¼ 1; 2; . . .Ng associated
with class labels fLi; i ¼ 1; 2; . . .Ng (Li 2 f�2;�1;þ1;þ2g),
to acquire transformation matrices U and V which are used
to project the original tensor samples to the tensor-based
graph embedding space. It is difficult to obtain the optimal
U and V simultaneously. As in [7], we estimate U and V
iteratively. For a fixed U, we estimate the optimal V using
Proposition 2. Then, with the estimated V, we update U.
This iteration process is repeated a certain number of times.

The algorithm is outlined below:

Step 1: Initially set U to the first l1 columns of the identity
matrix and set the iteration step t to 1.

Step 2: CalculateW andWp from (6) and (7), respectively.
Step 3: for t ¼ 1! T do

CalculateDU ,WU ,D
p
U , andWp

U from (11) and (12);
Compute V by solving the generalized eigenvector
problem: ðDp

U �Wp
UÞv ¼ �ðDU �WUÞv;

CalculateDV ,WV ,D
p
V , andWp

V by swappingU andV in
(11) and (12);
Update U by solving the generalized eigenvector prob-
lem: ðDp

V �Wp
V Þu ¼ �ðDV �WV Þu;

end for.
Step 4: Return U and V.

The number of iterations which ensures that the algorithm
reaches a satisfactory result is determined empirically.While
our graph embedding model updates the samples online,
the graph embedding subspace is updated iteratively.

Based on the obtained U and V, a tensor classifier hðXÞ is
constructed using the Euclidean distance in the low dimen-
sional tensor embedding space. The unlabeled samples
with pseudo labels are combined with the labeled training
samples to train the classifier hðXÞwhich labels X according
to the weighted center positions Rþ of the positive samples
and R� of the negative samples. The weighted center posi-
tion Rþ of the positive samples is defined as:

Rþ ¼ UT b
PN

i¼1 X idðLi;þ2Þ þ ð1� bÞ
PN

i¼1 X idðLi;þ1Þ
b
PN

i¼1 dðLi;þ2Þ þ ð1� bÞ
PN

i¼1 dðLi;þ1Þ

 !
V;

(21)

where bð0:5 < b � 1Þ is used to give more weight to the
samples whose labels are “þ2” than the samples whose
labels are “þ1”, and dðx; yÞ equals 1 if x ¼ y, otherwise it
equals 0. The weighted center position R� of the negative
samples is defined as:

R� ¼ UT b
PN

i¼1 X idðLi;�2Þ þ ð1� bÞ
PN

i¼1 X idðLi;�1Þ
b
PN

i¼1 dðLi;�2Þ þ ð1� bÞ
PN

i¼1 dðLi;�1Þ

 !
V:

(22)

We define a function fðXÞ:

fðXÞ ¼ UTXV� R�
�� ��� UTXV� Rþ

�� ��þ pt; (23)

where pt is chosen to ensure that for any training sample X i

signðfðX iÞÞ ¼ signðLiÞ. Then, the classifier hðXÞ is defined
by hðXÞ ¼ signðfðXÞÞ. Two points ensure that samples are
separable: 1) In general, the object samples are separable
from the background samples. 2) In the penalty graph,
more weights are defined to separate the object samples
from the background samples.

3 TRANSFER-LEARNING-BASED SEMI-SUPERVISED

IMPROVEMENT

We construct a semi-supervised method which uses the
unlabeled data to adjust the learned discriminative embed-
ding space. As in the previous discriminant trackers [6],
[10], we use the image patches corresponding to the track-
ing results as the labeled positive samples, and use the
image patches in the background as the labeled negative
samples. Then, a discriminative embedding space is learned
using these labeled positive and negative samples in the
supervised way described in Section 2. We further select a
number of useful unlabeled samples in the new frame to
adjust the embedding space in a semi-supervised way.

We introduce transfer learning into the semi-supervised
learning process. In the tracking application, if the sample
set is updated frequently, then there can be a more rapid
response to changes in appearance. However, errors may
occur in the updates, and tracking drift may be induced by
large variations in appearance over time. Stability of the
tracker is reduced. If the sample set is updated slowly,
the tracker is less affected by tracking errors and more
robust to tracking drift, but its adaptability is reduced. To
maintain both the adaptability and the stability of tracking,
we construct two sample sets. One is called “the target set”
[10] which only consists of the object and background sam-
ples collected from recent frames. The other is called “the
auxiliary set” [10] which consists of the samples collected at
earlier tracking stages. The target set is updated frequently,
to ensure that it is adaptable to changes in appearance. The
auxiliary set is updated slowly to ensure stability of tracking
and robustness to tracker drift. The samples in the auxiliary
set are treated as the source data and the samples in the tar-
get set are treated as the target data [52]. The changes in the
environment ensure that the distribution of the samples is
changed, i.e., the distribution of the source data may be
quite different from the distribution of the target data. We
transfer information in the source domain to the target
domain [52]. First, we use only the samples in the target set
to learn an initial tensor graph embedding space which
retains the discriminative information about the changes in
object appearance in recent frames. Then, using the auxil-
iary set, we select the unlabeled samples which are most
probably misclassified by the current learned graph embed-
ding space. Their labels are chosen according to their
similarities to the samples in the auxiliary set. The selected
samples are used to iteratively update the graph embedding
tensor subspace. In this way, the discriminative information
about the earlier changes in object appearance is transferred
into the graph embedding space. This transfer-learning-

HU ETAL.: SEMI-SUPERVISED TENSOR-BASED GRAPH EMBEDDING LEARNING AND ITS APPLICATION TOVISUAL DISCRIMINANT... 177



based semi-supervised improvement makes the appearance
model more robust to tracking drift.

In the semi-supervised adjustment, samples with high
similarity usually share the same label [41]. We do not use
the projected tensor difference to measure the similarities
between tensor samples. This is because the initial projec-
tion matrices in the iterative semi-supervised improvement
process are not accurate enough for projecting tensor sam-
ples into a low-dimensional space. We also do not use the
similarity measure based on the two-order tensor distance
in (4). This is because in contrast with the graph embed-
ding learning process in which it is only necessary to com-
pute the distances between recent samples, the transfer
learning-based semi-supervised improvement requires the
computation of the distances between the recent samples
in the target set and the earlier samples in the auxiliary set.
As the recent environment and earlier environments may
be quite different, a simpler similarity measure based on
the two-order tensor distance is not effective enough for
measuring similarities between recent samples and earlier
samples. Instead, we develop a more accurate block divi-
sion-based covariance matrix descriptor measuring the
similarities between these samples. In the descriptor, the
local relations between pixels in sample patches are mod-
eled. The division of an image patch into non-overlapping
blocks incorporates more local spatial information into the
similarity measurement. The local information in the
covariance distance is a supplementary to the holistic
features used in the tensor-based graph embedding. In the
following, we first describe the block-division-based simi-
larity estimation, and then propose our transfer-learning-
based semi-supervised improvement.

3.1 Block Division-Based Similarity Estimation

In each sample patch, a feature vector f for each pixel is
defined as:

f ¼ x; y;f; fxj j; fy

�� ��; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfxÞ2 þ ðfyÞ2

q� �
; (24)

where ðx; yÞ are the pixel coordinates, f is the intensity
value of this pixel, and fx and fy are the first order intensity

derivatives. We divide the patch into m� n blocks. Given a
block (p, q), let V be the number of pixels in the block and
let m be the mean of ffkgk¼1;2;...;V. The image block (p, q) is

represented using a covariance matrix Cpq [14], [37] which is
obtained by:

Cpq ¼ 1

V� 1

XV
k¼1
ðfk � mÞðfk � mÞT : (25)

Given the symmetric positive definite matrix Cpq, the

SVD (singular value decomposition) for Cpq (Cpq ¼ ESFT )
produces the orthogonal matrix E and the diagonal matrix
S ¼ Diagðn1; n2; . . . ; n6Þ where fnigi¼1;2;...;6 are the eigenval-

ues of Cpq. The matrix logarithm of Cpq is defined by:

log ðCpqÞ ¼ E �Diagðlog ðn1Þ; log ðn2Þ; . . . ; log ðn6ÞÞ � ET : (26)

Due to the vector space structure of logðCpqÞ, it can be
unfolded into a vector opq. As logðCpqÞ is a symmetric

matrix, only the elements of its upper triangular matrix are
utilized in opq. The off-diagonal elements in logðCpqÞ are

multiplied with
ffiffiffi
2
p

to ensure that the distance between any
two symmetric matrices is equal to the distance between the
corresponding unfolded vectors. The image patch is repre-

sented by the set of vectors fopqgq¼1;2;...;np¼1;2;...;m. The similarity

between the block (p, q) in patch i and the block (p, q) in
patch j is computed by:

spqij ¼ exp �
opqi � opqj

��� ���2
spq
i spq

j

0
B@

1
CA; (27)

where spq
i ¼ ko

pq
i � opq

iðkÞ
k and iðkÞ indicates the kth nearest

neighbor of patch i.
The blocks nearer to the center of an image patch are

more informative, while the boundary blocks are prone to
be influenced by the exterior of the image patch. So, we
weight the blocks in a patch using the spatial global Gauss-
ian filtering. The weight vpq for a block (p, q) is defined as:

vpq ¼ exp �ðxpq � xoÞ2 þ ðypq � yoÞ2

2s2
spatial

 !
; (28)

where xpq and ypq are the positional coordinates of block (p,
q), xo and yo are the positional coordinates of the center of
the patch, and sspatial is a scaling factor. Then, the similarity
SðX i;X jÞ between samples X i and X j is defined as:

SðX i;X jÞ ¼
Pm

p¼1
Pn

q¼1 v
pqspqijPm

p¼1
Pn

q¼1 v
pq

: (29)

3.2 Semi-Supervised Improvement

Let fðX i; LiÞgNA
i¼1 denote the auxiliary set of the tensor sam-

ples, where NA is the number of the auxiliary samples, and
Li be the label, either “þ1” or “�1”, of sample X i. Let

fðX i; LigNAþNT
i¼NAþ1 denote the target sample set, where NT is

the number of the samples in the target set. Let fX jgNU
j¼1

denote the set of the unlabeled samples, where NU is the
number of the unlabeled samples.

We derive the transfer-learning-based semi-supervised
adjustment algorithm in an iterative way. Let hð0ÞðXÞ:
RI1�I2 ! f�1;þ1g denote the tensor classifier that is
obtained by the tensor-based graph embedding learning
algorithm in Section 2.3.3 only using the labeled samples in

the target set. Let hðtÞðXÞ:RI1�I2 ! f�1;þ1g denote the clas-
sifier that is obtained in the tth iteration by the tensor-based
graph embedding learning algorithm using the labeled sam-
ples in the target set and the samples with pseudo labels. It is

used to improve hðt�1ÞðXÞ. Let HðXÞ:RI1�I2 ! R denote the
tensor classificationmodelwhich is obtained by linearly com-

bining the classifiers obtained in the previous T̂ iterations:

HðXÞ ¼ a0h
ð0ÞðXÞ þ

XT̂
t¼1

ath
ðtÞðXÞ; (30)

where a0 and fatg are the combination weights. While hðXÞ
outputs the sign for labeling X , the ensemble classifier
HðXÞ outputs a real value which represents the weight for
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labeling X and whose sign corresponds to the label of X . At

the ðT̂ þ 1Þth iteration, our goal is to find a new tensor clas-
sifier hðXÞ together with the combination weight a, satisfy-
ing the following optimization:

Minimize
hðXÞ;a

F¼
XNA

i¼1

XNU

j¼1
Sij exp �2LiðHðX jÞ þ ahðX jÞÞ


 �

þ h
XNU

j1¼1

XNU

j2¼1
Sj1j2 exp HðX j1Þ �HðX j2Þ


 �
exp aðhðX j1Þ � hðX j2ÞÞ

 �

Subject to hðX iÞ ¼ Li; i ¼ 1; . . .NA;

(31)

where h weights the contribution of the inconsistencies
among the unlabeled data. The usual value of h is NA=NU .
The similarity Sij between a sample in the auxiliary set and
an unlabeled sample and the similarity Sj1j2 between two

unlabeled samples j1 and j2 are computed using the block
division-based covariance matrix descriptor in Section 3.1.
The first term in the objective function in (31) measures the
inconsistencies between the labeled samples in the auxiliary
set and the unlabeled samples: for an unlabeled sample j
which is similar to a labeled sample i (i.e., Sij is large), it
decreases the objective function if sample j shares the same
label with sample i (i.e., hðX jÞ ¼ Li). The second term in the
objective function measures the inconsistencies among the
unlabeled samples: it decreases the objective function if a
pair of similar unlabeled samples j1 and j2 (i.e., Sj1j2 is large)

share the same label (hðX j1Þ ¼ hðX j2Þ). Although there is

the product of the labels in the first term, the component Li

in the product is 1 or �1, and the product is equal to
HðX jÞ þ ahðX jÞ or – (HðX jÞ þ ahðX jÞ). Then, the first term
and the second term in the objective function in (31) finally
have similar forms.

On regrouping the terms in the objective function F in
(31), the objective function is rewritten as follows:

F ¼
XNU

j¼1
Pje

�2ahðX jÞ þQje
2ahðX jÞ

� 	
; (32)

where

Pj ¼
XNA

i¼1
Sije

�2HðX jÞdðLi; 1Þ þ
h

2

XNU

j�¼1
Sjj�e

ðHðX j� Þ�HðX jÞÞ; (33)

Qj ¼
XNA

i¼1
Sije

2HðX jÞdðLi;�1Þ þ
h

2

XNU

j�¼1
Sjj�e

ðHðX jÞ�HðXj� ÞÞ; (34)

where dð:Þ is defined as in (21). According to [16], F is mini-
mized when only the unlabeled samples with maximum
values of jPj �Qjj are classified as hðX jÞ ¼ signðPj �QjÞ.
So, we choose these unlabeled samples, and label them with
2signðPj �QjÞ (“�2” or “þ2”). Then, they are combined

with the labeled samples fX igNAþNT
i¼NAþ1 in the target set to

learn a new discriminative embedding space which yields a
new tensor classifier hðXÞ. By minimizing F [16], the opti-
mal a is derived as:

a ¼ 1

4
ln

PNU
j¼1 PjdðhðX jÞ; 1Þ þ

PNU
j¼1 QjdðhðX jÞ;�1ÞPNU

j¼1 PjdðhðX jÞ;�1Þ þ
PNU

j¼1 QjdðhðX jÞ; 1Þ

 !
: (35)

Then, the improved tensor classification model Hð�Þ is
obtained.

The procedure of the semi-supervised improvement
algorithm is outlined as follows:

Step 1: Compute the similarities between the unlabeled sam-
ples and the similarities between the auxiliary sam-
ples and the unlabeled samples.

Step 2: Train hð0ÞðXÞ by the tensor-based graph embedding

algorithm only using fX igNAþNT
i¼NAþ1.

Step 3: Compute a0 using (33), (34), and (35).
Step 4: Initialize HðXÞ ¼ a0h

ð0ÞðXÞ;
Step 5: for t ¼ 1! T̂ do

Compute Pj and Qj for every unlabeled sample j using
(33) and (34);
Find the unlabeled samples with maximal values of
jPj �Qjj, and label them with 2 signðPj �QjÞ;
Combine these chosen samples with fX igNAþNT

i¼NAþ1 to train

a new classifier hðtÞðXÞ using the tensor-based graph
embedding learning algorithm;
Compute at using (35);
Adjust the tensor classification model by HðXÞ  H

ðXÞ þ ath
ðtÞðXÞ;

end for
Step 6: ReturnHðXÞ.

From (33) and (34), it is seen that, if an unlabeled sample
X j is highly similar to the positive samples in the auxiliary
set, but wrongly predicted to have the negative label by the
current tensor-based graph embedding classifier, then this
unlabeled sample has a large Pj and a small Qj. We choose
this unlabeled sample and label it with 2 signðPj �QjÞ. Like-
wise, we choose the top few most “mis-predicted” samples
for improving the tensor-based ensemble classifier HðXÞ.
These chosen unlabeled samples are useful to encode dis-
criminant information at earlier time for compensating for
the loss of discriminant information in the tensor-based
graph embedding space.

4 VISUAL TRACKING

We apply the proposed transfer-learning-based semi-
supervised tensor-based graph embedding learning algo-
rithm to appearance-based object tracking. We incorpo-
rate it into the flexible and effective Bayesian inference
tracking framework [21] to generate a new tracking algo-
rithm. Fig. 2, an extension of Fig. 1, shows an overview of
the proposed tracker. The main modules in the proposed
tracking algorithm include sampling the positive and neg-
ative samples in the target set, collecting the labeled sam-
ples in the auxiliary set, sampling the unlabeled samples,
and combining the transfer-learning-based semi-super-
vised tensor graph embedding algorithm with the particle
filtering framework.

The online update of our tracker is carried out by updat-
ing the samples in the target set and the auxiliary set. The
tracking results at a number of previous frames are used to
generate positive samples in the target set. The variations of
these samples are mainly caused by the object appearance
variations over time. We draw the negative samples in the
target set from the image region near to and surrounding
the image patch indicated by the tracking result at the previ-
ous frame t–1, to ensure that these negative samples do not
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lie too far or too close to the object. A dense sampling
method is used: a window slides in the surrounding region
with high overlap ratio to generate a large number of image
patches. A subset of the patches is randomly selected and
the elements are labeled as negative. The auxiliary set of the
labeled samples is collected from the earlier frames, i.e., we
choose a positive sample and some negative samples every
several frames for the auxiliary set.

An object’s state is represented using an affine parameter
vector h. A Gaussian distribution Gðhht�1;SÞ is used to model
the state transition distribution corresponding to the dynamic
model in the particle filtering. The mean vector of the Gauss-
ian distribution is the affine parameter vector hht�1 estimated
at the previous frame t–1, and the covariance matrix S is set
empirically. We simply consider the object state information
in 2D (x, y) translation and scaling in order to fairly compare
our results with other tracking algorithms. The particles at the
current frame t are drawn from the state transition distribu-
tion Gðhht�1;SÞ. The image patches determined by the state

vectors of these particles are normalized to tensors fX jgNU
j¼1

which are used as the unlabeled tensor samples.
We apply the proposed semi-supervised tensor-based

graph embedding learning algorithm to the labeled samples
in the target set, the labeled samples in the auxiliary set,
and the unlabeled samples. Then, the ensemble classifier
HðXÞ is obtained. Corresponding to HðXÞ, the weight EðhhjÞ
of each particle hhj (j ¼ 1; 2; . . .NU ) in the particle filtering is

defined as:

EðhhjÞ ¼ a0f
ð0ÞðX jÞ þ

XT̂
t¼1

atf
ðtÞðX jÞ; (36)

where X j is the tensor corresponding to particle hhj. Maxi-
mum a posterior (MAP) estimation is used to estimate the
tracking result hht at the current frame t:

hht ¼ argmax
j

EðhhjÞ: (37)

The global tracking algorithm is summarized as follows:

Step 1: The positive tensor samples in the target set are updated
using the tracking results at the previous frame.

Step 2: The negative tensor samples in the target set are drawn
from the image region near to and surrounding the
patch indicated by the tracking result hht�1 at the previ-
ous frame t–1.

Step 3: The samples in the auxiliary set are updated once every
several frames.

Step 4: The dynamic model Gðhht�1;SÞ is used to produce a
number of particles at the current frame t. The tensors
corresponding to these particles are used as the unla-
beled tensor samples.

Step 5: The transfer-learning-based semi-supervised tensor
graph embedding algorithm is applied to the labeled
samples in the auxiliary set, the labeled samples in
the target set, and the unlabeled samples. A final
graph embedding space is then obtained iteratively.

Step 6: The weight of each particle hhj is evaluated using EðhhjÞ.
Step 7: The particle with the largest weight is taken as the track-

ing result, as shown in (37).

To simplify the complexity analysis of the algorithm, we
assume that l1 ¼ l2 ¼ l, and I1 ¼ I2 ¼ I. The main computa-
tional cost of the proposed tracker is the calculations of WU ,
WV , W

p
U , and Wp

V , the generalized eigenvalue decomposi-

tion, and calculation of Pj and Qj. Each of the calculations

of WU , WV , W
p
U , and Wp

V requires OðN2ðI2 þ 2I2lÞÞ floating-
point multiplications. The sparseness of W and Wp reduces
the computational cost. The generalized eigenvalue decom-

position requires OðI3Þ floating-point multiplications. Cal-
culation of Pj and Qj for each unlabeled sample j requires
OðNA þNUÞ floating-point multiplications. So, the compu-

tational complexity of the proposed tracker is OðT̂ ðNAþ
NUÞNU þ ðT̂ þ 1ÞT ðN2ðI2 þ 2I2lÞ þ I3ÞÞ. As T̂ ; T; I; l� N <
NU , The computational complexity approximates OððNAþ
NUÞNU þN2Þ.

5 EXPERIMENTAL RESULTS

There are many comparison results in the conference ver-
sion of the work [38]. In this paper, we only present the new
experimental comparison results focusing on the bench-
mark tracking dataset [39] published in CVPR 2013. In this
dataset, there are 51 fully annotated sequences containing
more than 25,000 frames. These sequences were annotated
with the following 11 attributes: illumination variation,
scale variation, occlusion, deformation, motion blur, fast
motion, in-plane rotation, out-of-plane rotation, out-of-
view, background clutter, and low resolution. The providers
of the benchmark evaluated 29 state-of-the-art tracking
algorithms and released their results on this dataset. The
evaluation of the results is based on the following criteria:

Fig. 2. An overview of the proposed tracker.
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� the center location error (CLE) between the center of
the predicted bounding box and the center of the
ground truth bounding box at each frame;

� the visual overlap ratio (VOR) between the predicted
bounding box Bp and the ground truth bounding
box Bg:

VOR ¼ areaðBp \BgÞ
areaðBp [BgÞ

: (38)

The benchmark used the precision plots based on the
location error metric and the success plots based on the
overlap rate metric to evaluate performances of different
tracking algorithms:

� Precision plot: the x-coordinate of a point in the plot
is a location error threshold, and the y-coordinate of
the point is the proportion of a video’s frames in
which the center location error is less than the
threshold. These points form a curve as the threshold
is gradually increased.

� Success plot: the x-coordinate of a point in the plot is
an overlap ratio threshold, and the y-coordinate of
the point is the proportion of a video’s frames in
which the overlap ratio is larger than the threshold.

The following representative precision and representa-
tive success rate were used to summarize the overall track-
ing performance:

� The y-coordinate of the curve in the precision plot
when the x-coordinate is 20 pixels

� The y-coordinate of the curve in the success plot
when the x-coordinate is 0.5.

In the experiments, the first positive sample was the ini-
tial bounding box at the first frame supplied on the bench-
mark. Eight positive samples were constructed by
perturbing a few pixels in four possible directions at the cor-
ner points of the first sample at the first frame. These nine
samples were used as initial positive samples. The number
of particles, i.e., the number NU of the unlabeled samples,
was set to 600. The parameter k for the k-nearest neighbors
was empirically chosen as 7 according to [32]. The number
nþ1 of the positive samples and the number n�1 of the nega-
tive samples in the target set were set to 50 and 100, respec-
tively. The scaling factor sspatial in (28) was set to 2.9. A
positive sample and four negative samples were chosen
every six frames for the auxiliary set. The number of the
positive samples and the number of the negative samples in
the auxiliary dataset were set to 20 and 80, respectively. We
found 60 unlabeled samples with maximum values of
jPj �Qjj and used them to adjust the ensemble classifier
HðXÞ. All the image patches corresponding to the samples
were normalized to templates of size 32� 32, making the
dimensions of the 2-order tensors unchanged. Each image
patchwas divided into 4�4 blocks. The number of columns of
bothU andV in the tensor-based graph embedding learning
algorithmwere set to 2, i.e., l1 ¼ l2 ¼ 2. The number T of iter-

ations for estimating U andVwas set to 20 for solving h0ðXÞ
and to 5 for solving htðXÞ, t 	 1. The weight b in (21) was set

to 0.8. The parameter T̂ in the semi-supervised adjustment
algorithm was set to 4 for a compromise between tracking
speed and accuracy, i.e., 5 tensor-based ensemble classifiers

are used in the final model. The above parameter settings
remained the same in all the experiments.

We evaluated the performance of our tracking algorithm
on the entire dataset and on the sub-sets with different
annotated attributes. We first validated the main properties
of our tracker, such as image-as-matrix representation and
semi-supervised improvement. Then, we compared our
tracker with state-of-the-art trackers.

5.1 Illustration of Properties of Our Tracking
Algorithm

Our framework for tracking is a combination of multiple
strategies whose coordination ensures the final tracking per-
formance. To illustrate the effectiveness of the strategies of
the image-as-matrix representation, the graph embedding for
discriminative representation of tensors, the semi-supervised
improvement (ensemble learning), the transfer learning,
and the spatial Gaussian filtering in our tracking algorithm,
we compared our Tensor-based Discriminant Tracking
algorithm with Transfer-learning-based Semi-Supervised
Improvement (TrSSI-TDT)with the following variants:

� TrSSI-VDT: This is the image-as-Vector representa-
tion-based Discriminant Tracking algorithm with
transfer-learning-based semi-supervised improve-
ment, i.e., the image-as-tensor representation is
replaced with the image-as-vector representation. It
uses the traditional vector-based graph embedding
with only one transformation matrix in [28] to learn
the graph embedding. The classifier hðXÞ is con-
structed using this transformation matrix. Then, the
transfer-learning-based semi-supervised improve-
ment in Section 3 is applied in the vector
representation.

� TrSSI-2DLDA: This is the tracking algorithm
obtained by replacing the 2D tensor discriminant
graph embedding in TrSSI-TDT with the 2D linear
discriminant analysis (LDA).

� TDT: This is the tensor-based discriminant tracking
algorithm without semi-supervised improvement,
i.e., the transfer-learning-based semi-supervised
improvement (TrSSI) is removed from TrSST-VDT.

� MI-TDT: This is the tensor-based discriminant track-
ing algorithm combined with the Margin Improve-
ment technique [4], which adjusts the classification
margin in a semi-supervised way. Namely, it is
obtained by replacing TrSSI in TrSSI-TDT with MI
in [4].

� SSI-TDT: This is the algorithm obtained by replacing
the auxiliary sample set with the target sample set,
i.e., transfer learning is not used in the semi-super-
vised improvement. This algorithm is just the one in
our conference version of the work [38].

� TrSSI-RSF: This algorithm is obtained by Removing
the Spatial Filtering in (28) from TrSSI-TDT.

Fig. 3 shows some examples of the tracking results of
TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-
TDT, and TrSSI-RSF on the benchmark dataset. Fig. 4
shows the precision plots and the success plots of TrSSI-
TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT,
and TrSSI-RSF on all the sequences in the benchmark
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Fig. 3. Tracking results of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF.

Fig. 4. The precision plots and the success plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF on all the sequen-
ces: each decimal number in the legend is the representative precision or the representative success rate of the corresponding tracker: (a) the preci-
sion plots and (b) the success plots.
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dataset. From these figures, the following useful points
are revealed:

� The transfer-learning-based semi-supervised impro-
vement (TrSSI), semi-supervised improvement (SSI),
and margin improvement (MI) enhance TDT, and
the enhancement from SSI is higher than from MI.
This indicates that TrSSI and SSI effectively adjust
the graph embedding subspace.

� Our TrSSI-TDT obtains more accurate results than
TrSSI-2DLDA. This illustrates the effectiveness of
the graph embedding for a discriminative represen-
tation for 2D tensors.

� TrSSI-TDT yields more accurate results than TrSSI-
VDT. As shown in the sixth and seventh examples
in Fig. 3, when occlusion occurs, TrSSI-TDT still
successfully tracks the objects, but TrSSI-VDT loses
the track. This indicates that the two-order tensor
(image-as-matrix) representation which uses the pro-
jections U and V retains more useful structure infor-
mation than image-as-vector representation which
uses one projection.

� TrSSI-TDT yields more accurate results than SSI-
TDT. This indicates that historical information is
effectively transferred into our object appearance
model. This ensures that our tracker keeps the diver-
sity of object appearance and avoids tracking drift
after large changes in appearance, caused by large
occlusions or serious pose or scale variations, etc.

� TrSSI-TDT yields more accurate results than TrSSI-
RSF. This indicates the effectiveness of the spatial fil-
tering in our appearance model.

� TrSSI-VDT, in which the tensor representation is not
used, yields slightly more accurate results than SSI-
TDT in which transfer leaning is not used. This indi-
cates that transfer leaning may, overall, be more
important than tensor representation for improving
the tracking accuracy.

The proposed transfer-learning-based semi-supervised
improvement can be used for reference for other tracking
algorithms for improving the tracking performance.

Figs. 5 and 6 show, respectively, the precision plots and
the success plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT,
TDT, MI-TDT, SSI-TDT, and TrSSI-RSF for annotated attrib-
utes, respectively. Due to the space limitation, only the plots
for the attributes of occlusion, deformation, out-of-plane
rotation, and background clutter are shown here. The plots
for all the 11 annotated attributes are shown in the supple-
mental file, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/2539944. The following useful points are exhibited:

� TrSSI always improves the tracking results except for
low resolution videos. TDT and MI-TDT are not
robust against large changes in illumination (such as
in videos Car4, Cardark, Coke, David, and singer2),
occlusions (such as in videos Coke, David3, and
Lemming), and background clutter (such as in

Fig. 5. The precision plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF for different attributes.

HU ETAL.: SEMI-SUPERVISED TENSOR-BASED GRAPH EMBEDDING LEARNING AND ITS APPLICATION TOVISUAL DISCRIMINANT... 183



videos Football, Freeman4, and Lemming), etc.
TrSSI-TDT can effectively handle large occlusions
(such as in videos Coke, David3, Freeman4, and
Lemming). However, the variants lose the track to
some extent.

� For the videos with the attributes of occlusion,
deformation, and out-of-plane rotation, transfer
learning contributes more than tensor representa-
tion, because the results of TrSSI-VDT are more
accurate than the results of SSI-TDT. For the videos
with the attributes of background clutter, in-plane
rotation, and illumination variation, transfer learn-
ing contributes as much as tensor representation
and combination of transfer learning and tensor
representation into the semi-supervised adjust-
ment produces a large improvement in the results
of our TrSSI-TDT.

5.2 Comparison with Competing Trackers

To show the effectiveness of TrSSI-TDT, we conducted a
comparison between TrSSI-TDT and the 29 state-of-the-art
trackers whose results were released on the CVPR 2013
benchmark dataset.

Fig. 7 shows some tracking results of TrSSI-TDT and the
top 10 ranked competing trackers on the dataset. Fig. 8
shows the precision plots and the success plots of the top 10
ranked trackers among TrSSI-TDT and the 29 competing
trackers on all the sequences in the benchmark dataset. The
following useful points are seen:

� In the precision plots, when the location error thresh-
old lies within a large interval [5], [50], our TrSSI-
TDT yields the highest precision compared with the
competing algorithms. In the success rate plots, when
the overlap rate threshold lies within a large interval
(0, 0.8), TrSSI-TDT yields the highest success rates.
TrSSI-TDT’ s representative precision is larger, by 7.6
percent, than the representative precision of Struck
[42] which is the top tracker ranked by the representa-
tive precision among all the competing trackers. TrSSI-
TDT’s representative success rate is larger, by 5.3 per-
cent, than the representative success rate of SCM [43]
which is the top tracker ranked by the representative
success rate among all the competing trackers.

� Even the TrSSI-VDT and the SSI-TDT yield perform-
ances comparable to Struck and SCM. This further
indicates the effectiveness of the transfer learning
and semi-supervised improvement in our algorithm.

Figs. 9 and 10 show, respectively, the precision plots and
the success plots of the top 10 ranked trackers among TrSSI-
TDT and the 29 competing trackers for the annotated attrib-
utes of occlusion, deformation, out-of-plane rotation, and
background clutter. The plots for all the 11 annotated attrib-
utes are shown in the supplemental file, available online.
The following points are seen:

� Our TrSSI-TDT yields the results of top one for six
attributes, top-2 for eight attributes, and top -4 for 10
attributes.

Fig. 6. The success plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF for different attributes.
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Fig. 7. Tracking results of TrSSI-TDTand the top 10 ranked competing trackers.

Fig. 8. The precision plots and the success plots of the top 10 ranked trackers among TrSSI-TDTand the 29 competing trackers on all the sequences:
(a) the precision plots; (b) the success plots.
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Fig. 9. The precision plots of the top 10 ranked trackers among TrSSI-TDTand the 29 competing trackers for different attributes.

Fig. 10. The success plots of the top 10 ranked trackers among TrSSI-TDTand the 29 competing trackers for different attributes.
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� Our TrSSI-TDT clearly outperforms the competing
trackers for the following attributes which pose fre-
quent challenges in tracking: occlusions (such as in
the videos David3, Jogging-1, andWoman), illumina-
tion variation (such as in the videos Coke, David, and
Singer2), deformation (such as in the videos Basket-
ball, Crossing, and Subway), and background clutter
(such as in the videos Football, Freeman4, andDeer).

� TrSSI-TDT performs reasonably well on the videos
with the attributes of fast motion and out-of-view, as
TrSSI-TDT does not use a specific motion model
with re-detection such as in TLD (tracking-learning-
detection) [44].

We also compared our tracker with the very recent track-
ers in [53], [54]. On the benchmark dataset, the representa-
tive precision of the tracker in [53] is 0.730, and its
representative success rate is 0.551. The representative pre-
cision of the tracker in [54] is 0.649, and its representative
success rate is 0.484. Overall, the results of our tracker are
better than the results in [53], [54].

6 CONCLUSION

In this paper, we have proposed an effective and robust dis-
criminant tracking algorithm based on the proposed transfer-
learning-based semi-supervised 2-order tensor graph embed-
ding algorithm. The effectiveness of ourwork is attributed to:

� the specially designed two graphs for modeling the
local geometrical and discriminative structure of the
two-order tensor samples;

� the learning of the 2D tensor-based graph embed-
ding space

� the transfer-learning-based semi-supervised adjust-
ment technique.

This two-order tensor representation-based algorithm
retains more discriminant information than image-as-vector
representation-based algorithms. The transfer-learning-
based semi-supervised adjustment technique effectively
transfers discriminant information obtained from earlier
times into the discriminative embedding space. This makes
the proposed tracking algorithm able to address the chal-
lenges caused by heavy occlusion and large pose variations,
etc. Experimental comparisons on the CVPR 2013 bench-
mark tracking dataset have demonstrated the effectiveness
and robustness of the proposed tracking algorithm.

In our future work, we will extend our image-as-matrix
representation to higher-order tensor representation, e.g.,
three-order tensor representation, with a feature vector for
each pixel.
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